10 CBSE / 2022

Subject- Mathematics (Standard) Maximum Marks: 80

Time Allowed: 3 Hrs.

General Instructions:

1. This Question Paper has 5 Sections A-E.

2. Section A has 20 MCQs carrying 1 mark each

3. Section **B** has 5 questions carrying 02 marks each.

4. Section C has 6 questions carrying 03 marks each.

5. Section **D** has 4 questions carrying 05 marks each.

6. Section E has 3 case based integrated units of assessment (04 marks each) with sub-parts of the values of 1, 1 and 2 marks each respectively.

7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E

8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

areer Academy Reliance Cross Road, Kudasan, Gandhinagar.

Tk		_				
Career /	(a) all real values avaant 1	Fa	stest Growing Institute	(4) 1/2	KAIZEN CAREER ACADEMY	
10	(a) all real values except		(c) 3/2	(d) 1/2		
10. The perimeters of two similar triangles $\triangle ABC$ and $\triangle PQR$ are 35cm and 45cm respectively, then the ratio of the areas of the two triangles is						
	a) 5.7	b) $49 \cdot 81$	c) $25 \cdot 81$	c) $5 \cdot 9$		
11.	The radii and heights of	a cylinder and a	cone are equal. Then	the volume of	f the cylinder =x the	
	volume of the cone.	a eynnaer ana a	eone are equal. Then,			
					1	
	(A) Gareer Academy	(D) 2	(0)		$\left(D \right) \left \frac{1}{3} \right $	
12.	A running track is in the	shape of a circ	ular ring. The differe	ence of its out	er circumference and inner	
	circumference is 44 m. Then, the width of the track is m.					
	(A) 3.5	(B) 7	(C) 11		(D) 22	
13.	13. While calculating the area of a circle, its radius was taken to be 6 cm instead of 5 cm. The calculated area is					
	(A) 20	(B) 24	(C) 44		(D) 40	
		(-)	(-)		(-) · ·	
14.	14. The tops of two poles of height 18 m and 12 m are connected by a wire. If the wire makes an angle of measure					
	30 with horizontal, then the (Λ) 12 m	length of the wire (\mathbb{R}) 10 m	(C) 8 m		$(D) 1 \mathbf{m}$	
	(A) 12 III	(b) 10 III	(C) 8 III		(D) 4 III	
15.	If A (0, 0), B (2, 0), C (2, 2)	and D (0, 2), the	n ABCD is a			
	(A) square	(B) rectangle	(C) rhombus		(D) trapezium	
16. The length of a longest stick that can be placed in a cuboidal box of length 4 unit, breadth 3 units and height 12 units is						
		$\sqrt{160}$	$\sqrt{153}$			
	(A) 5	(B)	(C)		(D) 13	
17	In the AP 57911131	5 the sixth ter	rm which is prime is			
17.	(A) 13	(B) 19	(C) 23		(D) 15	
			······································	<u>,</u>		
18. The speed of a motor-boat in still water is x km/hr and the speed of the current of the river be 5 km/hr. Where						
	x > 5, then time taken to cov	er the distance of	y km in upstream is			
	$\frac{x+5}{y}$	$\frac{y}{x+5}$	$\frac{y}{x-5}$		$\frac{X-5}{Y}$	
Ы	(A) <u>y</u> DECTION: In the question	(B) [A + 3]	(C) $x = 3$	acentican (A) is	(D) $[]$	
DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R)						
Choose the correct option						
19. Statement A (Assertion): For an AP $a_{n,1} = a + (n-1)d$						
Statement R(Reason) : If the difference between two consecutive terms is same then the sequence is an AP						
(a) Both assertion (A) and reason (R) are true						
and reason (R) is the correct explanation of						
assertion (A) (b) Path assertion (A) and reason (B) are true						
(D) and	boun assertion (A) and reason (R) is not the corr	ect explanation	of			
ass	ertion (A)	cet explanation	01			
(c)	Assertion (A) is true but rea	ason (R) is false.				

(d) Assertion (A) is false but reason (R) is true.

11 $| 12 | \cdot \text{GSEB/CBSE} \cdot \text{NEET/JEE}$

20. Statement A (Assertion): Mean, median and mode are three measures of central tendency. Statement R(Reason): Mode = 3Median - 2Mean.

2

Career Academy

10 CBSE/ 2022-2

(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)

- (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A)
- (c) Assertion (A) is true but reason (R) is false.
- (d) Assertion (A) is false but reason (R) is true.

OR

If sin(A+B) = 1 and $cos(A-B) = \sqrt{3/2}$ where A and B are acute angles, find 3A + 2B.

SECTION C

26. Rahul had some chocolates, and he divided them into two lots A and B. He sold the first lot at the rate of ₹2 for 3 chocolates and the second lot at the rate of ₹1 per chocolate, and got a total of ₹400. If he had sold the first lot at the rate of ₹1 per chocolate, and the second lot at the rate of ₹4 for 5 chocolates, his total collection would have been ₹460. Find the total number of chocolates he had.

OR

At a certain time in a deer park, the number of heads and the number of legs of deer and human visitors were counted and it was found there were 39 heads & 132 legs. Find the number of deer and human visitors in the park.

27. A right angle triangle Δ ABC right angled at B circumscribes a circle such that the sides of the triangle touches the circle. If AB = 24 cm , BC = 10 cm , then find the radius of the circle.

A circle touches all the sides of quadrilateral ABCD. Prove that AB + CD = AD + BC. 28. If θ is measure of an acute angle and $q \sin \theta = p \cos \theta$, then evaluate the following:

 $\frac{p\sin\theta + q\cos\theta}{p\sin\theta - q\cos\theta}$

 $11 | 12| \cdot \text{GSEB/CBSE} \cdot \text{NEET/JEE}$

29. If $P(A) - P(\overline{A}) = 0.3$, then find $P(\overline{A})$.

- **30.** Prove that $\sqrt{2} + \sqrt{3}$ is irrational.
- 31. If one zero of the $p(x) = (k-1)x^2 10x + 3$ is the reciprocal of the other, then find value of k and hence find both the zeros.

Career Academ

SECTION D

32. Govind is making wooden toys for small children of his village. Each wooden toy is in the form of hemisphere surmounted by a cone of same radius. The radius of hemisphere is 3.5 cm and and total wood used in making $166\frac{5}{5}$

each toy is 1006 cm³. Find the height of the toy. Also, find the cost of painting the hemispherical part of the toy at the rate of Rs. 10 per cm²

OR

Two dairy owners A and B sell flavored milk filled to capacity in mugs of negligible thickness, which are cylindrical in shape with a raised hemispherical bottom. The mugs are 14 cm high and have a diameter of 7 cm as shown in the given figure. Both A and B sell flavored milk at the rate of Rs 80 per litre. The dairy owner A uses the formula $\pi r^2 \mathbf{h}$ to find the volume of milk in the mug and charges Rs 43.12 for it. The dairy owner B is of the view that the price of the actual quantity of milk should be charged. What according to him should be the price one mug of milk ?

33. Prove that if a line is drawn parallel to one side of a triangle intersecting the other two sides in distinct points, then the other two sides are divided in the same ratio.

Using the above theorem prove that a line through the point of intersection of the diagonals and parallel to the base of the trapezium divides the non parallel sides in the same ratio.

34. The hypotenuse of a right angled triangle is 6m more than twice the shortest side. If the third side is 2m less than the hypotenuse, find the sides of the triangle.

OR

- If the roots of the equation $a(b c)x^2 + b(c a)x + c(a b) = 0$ are equal, show that $\begin{bmatrix} a & b & c \\ a & b & c \end{bmatrix}$ are in A.P.
- **35.** In the retail market fruit vendors were selling apples kept in packing boxes. These boxes contained varying number of apples. If the median number of apples in a box was 42 and the total number of boxes was 550, then find the missing frequencies f_1 and f_2 in the following distribution table:

CASE STUDY BASED

11|12| · GSEB/CBSE · NEET/JEE

- **36.** A thief runs away from a Police Station with a uniform speed 100m/minutes. After one minute a Policeman runs behind the thief to catch him. He goes at a speed of 100m/minute in first minute and increases the speed 10m/minute on each succeeding minute.
 - i) Which mathematical concept is used to solve the above problem.?
 - ii) After how many minutes the Policeman catches the thief ?
 - iii) What is the total distance travelled by the Policeman?
- **37.** Figure below shows a circular play ground.

The centre of the circle is (2a + 3, 2a - 1). If one end of a diameter is (11,9) and diameter is of 20 units then:

- i) Find vaue of a.
- ii) What are the coordinates of centre of ground?
- iii) Find coordinates of other end of diameter.
- **38.** A straight highway leads to the foot of a tower. A man standing on the top of the tower observes a car at an angle of depression with measure 30⁰. The car is approaching the foot of the tower with a uniform speed. Six seconds later, the angle of depression of the car has measure 60⁰. Let uniform speed of car be v m/s.
 - i) Draw a neat figure to explain the above condition.
 - ii) Find distance travelled by car in six seconds in terms of v.
 - iii) Find the further time taken by the car to reach the foot of the tower.

[1] [1]

[2]

[1]

[1]

[2]

 $11|12| \cdot \text{GSEB/CBSE} \cdot \text{NEET/JEE}$